VOT merger in progress and speech rate accommodation in perception: a case study of Daejeon Korean

Yoonjung Kang¹, Suyeon Yun², and Na-Young Ryu³

¹University of Toronto, ²Chungnam National University, ³Pennsylvania State University

NWAV 51

October 13-15, 2023

Queens College, NY

Speech rate and production

- Compared to slow/normal speech, fast speech is marked by
 - shortening of segments
 - gestural overlap
 - articulatory reduction
 - prosodic reorganization
 - deletion and lenition of segments and syllables
 - Baese-Berk et al. 2018; Cohen Priva and Gleason 2018; Crystal and House 1988; Ernestus 2014; Fougeron and Jun 1998

Speech rate and production

- Compared to slow/normal speech, fast speech is marked by
 - shortening of segments
 - gestural overlap
 - articulatory reduction
 - prosodic reorganization
 - deletion and lenition of segments and syllables
 - Baese-Berk et al. 2018; Cohen Priva and Gleason 2018; Crystal and House 1988; Ernestus 2014; Fougeron and Jun 1998
- Such variation could potentially blur the contrast between long and short segments.

Perceptual compensation

- Listeners take into account the context of speech and adjust their perception in a process known as **perceptual compensation**.
 - Drager 2011; Hay et al. 2006a; Hay et al. 2006b; Johnson et al.1999; Koops 2008; Mann 1980; Mitterer 2006; Niedzielski 1999; Schertz et al. 2019; Strand 1999; Strand and Johnson 1996; Yu 2010
- Speech rate and perceptual compensation
 - Listeners are more likely to perceive a given duration as "long" when embedded in fast speech than in slow speech, other things being equal.

Speech rate & VOT **production** (English)

Kang, et al. (2018)

Speech rate & VOT production (English) VOT perception (English)

Speech rate &

Kang, et al. (2018)

Korean stops

	Fortis (unaspirated)	Lenis (slightly aspirated)	Aspirated (heavily aspirated)
Plosives	/p' t' k'/	/p t k/	/ph th kh/

Three-way contrast in stops

```
/t'al/ 'daughter' /tal/ 'moon' /thal/ 'mask'
```

VOT merger in Korean stops

• Aspirated (long VOT) and lenis (intermediate VOT) stops are merging in VOT, while the F0 of following vowel is taking over as the primary cue.

Kang, Gao, Yun & Ryu (this conference)

VOT merger in Korean stops

- Aspirated (long VOT) and lenis (intermediate VOT) stops are merging in VOT, while the F0 of following vowel is taking over as the primary cue.
- Pan-Korean change: A similar trend is reported for almost all dialects of Korean examined.

Silva (2022, 2006), Wright (2007), Kang & Guion (2008), Jin (2008), Kang & Han (2012, 2013), Beckman et al. (2014), Kang (2014), Kim & Byun (2014), Shin (2015), Kang & Nagy (2016), Byun (2016), Jin & Silva (2017), Ahn (2017), Bang et al. (2018), H. Lee & Jongman (2018), Kang, Han, Ryu, Schertz, & Yun (to appear), Kang, Schertz & Han (2022)

VOT merger in Korean stops

- Aspirated (long VOT) and lenis (intermediate VOT) stops are merging in VOT, while the F0 of following vowel is taking over as the primary cue.
- The change is led by younger and female speakers, resulting in age- and gender-based variation.

VOT contrast		VOT merger, reversal
O lder M ale	OF, YM	Y ounger F emale

Goals of the study

- Do listeners compensate for speech rate when the target duration contrast (VOT) is undergoing merger and VOT is no longer a reliable cue?
- If they do, do they make adjustment differently depending on
 - the listeners' own speech pattern?
 - Ladefoged & Broadbent 1957, Janson 1983, Miller & Grosjean 1997, Hay et al. 2006,
 Drager 2011, Fridland & Kendall 2012, Kendall & Fridland 2012
 - the talker's (expected) speech pattern?
 - Johnson et al. 1999, Strand 1999, Niedzielski 1999, Hay et al. 2006a, 2006b, Koops et al. 2008, Drager 2010, Schertz et al. 2017

Language and participants

- Daejeon Korean
 - Spoken in the city of Daejeon in the central region of South Korea.
 - 5th largest city in Korea (pop. 1.5 million)
- Participants
 - 81 speakers of Daejeon Korean

	Younger (20s)	Older (50s +)
Female	20	21
Male	20	20

Perception stimuli talkers

- Self-identified Daejeon natives
- Representing four age/gender groups expected to be at different stages of sound change.

		
OM	OF YM	YF

Perception stimuli talkers

Production matches the expected pattern based on their age/gender

Perception stimuli talkers

 Judged to be younger vs. older by our main study participants as well as pilot participants

- Comparable acoustic space across the participants
- A monosyllable /Pa/ ([pha] baseline)
- Manipulated to vary in:
 - VOT (7 steps, 10-130 ms)
 - F0 (3 steps, Low-Mid-High, 1 semitone intervals)

FO range and manipulation

- Mid: 50% lenis-aspirated response level for each talker, determined by a 29 speaker pilot
- Low and High are 1 semitone away from Mid

- Carrier sentence:
 - 문장 맨 마지막 말은 __다. "The last word of the sentence is __."
 - Manipulated to vary between slow (120 % of mean duration of all natural productions by the four talkers) and fast rates (80 %).
- 168 stimuli (2 rates * 7 VOT levels * 3 F0 levels * 4 talkers)

Older Male

Younger Female

Slow

Fast

Slow

Fast

VOT = 70ms VOT = 70ms

F0 = Mid (234 Hz) F0 = Mid (103 Hz)

- Carrier sentence:
 - 문장 맨 마지막 말은 __다. "The last word of the sentence is __."
 - Manipulated to vary between slow (120 % of mean duration of all natural productions by the four talkers) and fast rates (80 %).
- 168 stimuli (2 rates * 7 VOT levels * 3 F0 levels * 4 talkers)

Older Male

Younger Female

Slow

Fast

Slow

Fast

VOT = 70ms

VOT = 70ms

F0 = Mid (234 Hz)

F0 = Mid (103 Hz)

- Carrier sentence:
 - 문장 맨 마지막 말은 __다. "The last word of the sentence is __."
 - Manipulated to vary between slow (120 % of mean duration of all natural productions by the four talkers) and fast rates (80 %).
- 168 stimuli (2 rates * 7 VOT levels * 3 F0 levels * 4 talkers)

<u>Older Male</u> <u>Younger Female</u>

Slow Fast Slow Fast

VOT = 70ms VOT = 70ms

F0 = Mid (234 Hz) F0 = Mid (103 Hz)

- Carrier sentence:
 - 문장 맨 마지막 말은 __다. "The last word of the sentence is __."
 - Manipulated to vary between slow (120 % of mean duration of all natural productions by the four talkers) and fast rates (80 %).
- 168 stimuli (2 rates * 7 VOT levels * 3 F0 levels * 4 talkers)

Older Male

Slow

Fast

Younger Female

Slow

Fast

Identification (3 Alternative Forced Choice)

파다

바다

빠다

Statistical analysis

- A mixed-effects logistic regression model
 - Dependent variables: laryngeal type (Lenis = -0.5, Aspirated. = 0.5)
 - Fixed effects:
 - VOT (10, 30, 50, 70, 90, 110, 130) → z-scored
 - F0 $(-1,0,1) \rightarrow z$ -scored
 - Speech rate (Fast = 0.5, Slow = 0.5)
 - Listener Gender (Male = -0.5, Female = 0.5)
 - Listener Age (Old = -0.5, Young = 0.5)
 - Talker Gender (Male = -0.5, Female = 0.5)
 - Talker Age (Old = -0.5, Young = 0.5)
 - Interactions: (VOT + F0 + Rate) * (ListenerGender*ListenerAge + TalkerGender*TalkerAge)
 - Random effects: Speaker
 - Stepwise regression, backward elimination (Buildmer)

Statistical analysis

- A mixed-effects logistic regression model
 - Dependent variables: laryngeal type (Lenis = -0.5, Aspirated. = 0.5)
 - Fixed effects:
 - VOT (10, 30, 50, 70, 90, 110, 130) → z-scored
 - F0 $(-1,0,1) \rightarrow z$ -scored
 - Speech rate (Fast = 0.5, Slow = 0.5)

Are more aspirated stops chosen in fast speech?

- Listener Gender (Male = -0.5, Female = 0.5)
- Listener Age (Old = -0.5, Young = 0.5)
- Talker Gender (Male = -0.5, Female = 0.5)
- Talker Age (Old = -0.5, Young = 0.5)

Is the rate effect modulated by the age and gender of the listener or the talker?

- Interactions: (VOT + F0 + Rate) * (ListenerGender*ListenerAge + TalkerGender*TalkerAge)
- Random effects: Speaker
- Stepwise regression, backward elimination (Buildmer)

Main effects: VOT***, FO***

Main effect: Speech rate (p = 0.135)

Rate x Listener age : n.s. Rate x Listener gender: n.s.

Rate x Talker age*** Rate x Talker gender**

Rate * Talker: Post-hoc tests by talker

Summary and Conclusion

- The rate effect was modulated by the talkers' age and gender, but not by the listeners' own age and gender.
- Post-hoc tests find the expected rate effect (more aspirated stop responses in fast speech) only for the older male talker, a group that retains the VOT contrast more robustly.
- A significant rate effect in the opposite direction was found for the young female talker, who belongs to a group where the VOT distinction has merged and possibly reversed.
- The results are significant in showing the way listeners compensate for speech rate reflects the contrastive status of the duration cue undergoing a sound change in the talkers' speech.

Acknowledgements

- Participants
- Jung Haechan, Park Jeongin, and Park Beomjoon for help with data collection
- Hyongseok Kwon for help with programming
- SSHRC (Social Sciences and Humanities Research Council of Canada) for funding