Contrastive hyperarticulation of vowels in two dialects of Korean

Yoonjung Kang^{1,2}, Na-Yong Ryu², & Suyeon Yun³ ¹University of Toronto Scarborough, ²University of Toronto, ³Ewha Womans University August 5, 2019 *ICPhS 2019*

Contrastive hyperarticulation

- Speakers skillfully adjust their speech to adapt to the communicative demands of the speech context. (cf. Lindblom 1990)
- When prompted to speak clearly, especially to distinguish target words from their lexical competitors, speakers produce longer segments, and exaggerate acoustic contrasts. (See Smiljanić & Bradlow 2009 for a review.)

Contrastive hyperarticulation in vowels

- While studies found evidence for "global" enhancement such as longer vowel duration (Ohala 1994) and vowel space expansion (Cho, et al. 2011) in clear speech,
- evidence for contrast-specific spectral enhancement remains elusive and limited at best for vowels (Kirov and Wilson 2012, Ohala 1994, Schertz 2013, but see Wedel, et al. 2018).

Microvariation of hyperarticulation

- To probe how underlying phonological contrasts affect the pattern of hyperarticulation,
- studies compared clear speech production of identical or comparable target segments across different languages, dialects, or speaker groups.
 - "same" sounds, different language (Smiljanić & Bradlow 2005)
 - "same" sounds, different dialects (Clopper & Tamati 2014)
 - "same" sounds, different speaker group (Kang & Guion 2008)
 - "same" sounds, different words (Wedel, et al. 2018)

Microvariation of hyperarticulation

- If contrastive hyperarticulation is adaptive, other things being equal, we predict more contrast enhancement for less distinct contrasts (Clopper and Tamati 2014)
- Smaller the baseline difference, larger the contrastive dispersion?

Goals of the study

- Examine hyperarticulation of Korean vowels
- Full inventory monophthongal vowels
 - Previous studies on clear speech of vowels tend to examine a subset of vowels (corner vowels) only or limited to English.
- Examine microvariation of contrastive hyperarticulation across two dialects of Korean

Korean monophthongs

Table 1: Inventory of Korean monophthongs

i	(y)	i	u
e	(ø)	Λ	0
3		a	

Participants

	Old (above 40)	Young (40 or under)
Seoul	5F, 5M	5F, 6M
Hamkyoung	18F, 3M	13F, 2M

Speech materials

8 neighboring vowel pairs (/i-e/, /e-ε/, /ε-α/, /α-∧/, /∧-ο/, /o-u/, /u-i/, and /i-i/) * 3 minimal pairs each

 \rightarrow 24 minimal pairs

E.g., for /ε-α/ contrast: /sεtα/ 'to leak' - /sαtα/ 'to buy' /pεm/ 'snake' - /pαm/ 'night' /εksu/ 'amount' - /αksu/ 'handshake'.

Procedure

- General presentation
 - Self-paced word reading
 - standard orthography + a picture (to disambiguate and to make it less boring)
 - Psychopy (programming by Jessamyn Schertz) on a Microsoft Surface tablet.
- Three speech styles
 - Casual, Careful, Contrastive

"Casual"

밤 'night' [pam]

뱀 'snake' [pɛm]

"Careful" and "Contrastive"

"Careful"

"Careful"

"Contrastive"

Acoustic analysis

- Duration
- F1 and F2
 - from the mid 10% of the vowel
 - Lobanov normalization

Quantifying hyperarticulation

- Duration
- **Peripheralization** = dispersion from the centre of vowel space

$$Dispersion_{i} = \sqrt{F1_{i}^{2} + F2_{i}^{2}}$$

 Contrastive dispersion = Euclidean distance between vowels of minimal pairs

$$Distance_{ij} = \sqrt{(F1_i - F1_j)^2 + (F2_i - F2_j)^2}$$

Statistical analyses

- Linear mixed-effects regression models
- Dependent variable
 - Duration, Dispersion, Distance
- Fixed-effect predictors
 - Condition (Casual, careful, contrastive)
 - Dialect (<u>Seoul, HK</u>)
 - Gender (<u>F</u>, M)
 - Age (<u>Old,</u> Young)
 - Vowel or Vowel pairs
 - All interactions \rightarrow pared down by stepwise regression
- Random effect predictors
 - Subject intercept and slope for Condition
 - Word/Word pair intercept

Results: Duration

Results: Peripheralization

Results: Contrastive dispersion

Results: Contrastive dispersion

- Difference in the expected direction
 - Casual < Careful < Contrastive
- Interaction of condition and vowel pairs
 - Significant difference in Careful < Contrastive for $/\alpha \epsilon$ / and $/\alpha \Lambda$ / pairs only
 - The effects likely driven by lowering and peripheralization of $/\alpha/$

Similarity and enhancement

- More similar, more contrastive enhancement, except when there is sound change in progress in the opposite direction in Seoul
- This is compatible with other studies that found more advanced vocalic shift in the contexts of more careful/formal/"attention to speech".

Hyperarticulation and vowel shift

- /uw/ fronting in N. American Eng.: higher "attention to speech" > lower "attention to speech" (Labov 2010)
- Canadian vowel shift : formal > casual (Hall 2014)
- California vowel shift: word list > reading passage (Hall-Lew 2015)
- New Zealand vowel shift: low frequency > high (Hay, et al. 2015)
- Korean back vowel shift: word-initial position > medial (Kang 2014), based on read speech corpus
- Cockney vowel shift: **stressed** > **unstressed** (Labov 1994)

Summary

- Within dialects
 - Evidence for contrast-specific spectral hyperarticulation is hard to tease apart from peripheralization effects.
- Microvariation across dialects
 - Results are compatible with adaptive contrastive spectral enhancement: more similar, more enhancement
 - Exceptions are cases where ongoing sound change pulls contrastive target toward the direction of change

Thanks to:

- Participants
- Seoul National University Department of Linguistics for lab use
- Hana Centre for Refugee Adaptation (Seoul-South) and Ms. Sunhee Moon for assistance with participant recruitment
- Hyoung Seok Kwon for assistance with acoustic analysis
- SSHRC Grant #435-2013-2092